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SUMMARY

In this work, a generalized Hele–Shaw approach is developed for non-isothermal, non-Newtonian and
inelastic flows arising in injection molding. The advancing free surface of the injected fluid is predicted
by a novel meshless front-tracking method coupled to control volume finite element solution for the
pressure. A modified Cross constitutive model with Arrhenius temperature dependence is employed to
describe the viscosity of the melt and the temperature field is solved by a semi-Lagrangian scheme with
a finite volume method. The utility of the combined algorithm is demonstrated for a test problem that has
complex ‘obstacles’ in the mold interior. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Contemporary polymer processing simulation needs for injection molding applications require
non-Newtonian, non-isothermal capabilities. These should be integrated with more flexible mesh
and discretization approaches to address complex geometry and advancing free boundaries. Slow
viscous flow in a mold with relatively narrow gaps may be modeled reliably by a Hele–Shaw
approximation [1, 2]. Moreover, viscous heating plays an important role in the overall energy
balance for thin mold parts, whereas melt elasticity has little influence on injection pressures and
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fill rates so that generalized viscosity models such as the Cross model [3] considered here are
applicable. These features of the mold-filling problem provide several simplifications of the under-
lying 3D-coupled multiphysics process that leads to a less complex model that can be addressed by
an efficient iteratively decoupled algorithm as developed here. The numerical method developed
in this work utilizes the singular handle edge data structure [4] for a background unstructured
Delaunay triangulation [5] to construct a control volume finite element method (CVFEM) [6, 7].
The moving free surface is computed using a novel point-based local meshfree modification of
the front-tracking method. This scheme has the advantage of both allowing more than one control
volume to be filled at each time step when compared with the volume of fluid method proposed
in [7] and avoiding the explicit treatment of topological changes in the surface, usually an issue
found in purely front-tracking methods [8].

2. COUPLED NON-NEWTONIAN HELE–SHAW SYSTEM

As indicated in the Introduction, for the class of moving boundary problems considered here, model
simplification leads to a quasi-steady 2D Hele–Shaw system for pressure coupled to a 3D heat
transfer model. The Hele–Shaw equation for pressure in an incompressible generalized Newtonian
fluid with constant thermal conductivity has the form:

∇ ·S2∇ p=0 (1)

where p is the pressure and, in symmetric flow fields, S2=∫ h
0

z′2
� dz′, for generalized viscosity �

and mold thickness h. The pressure equation above is coupled to the energy equation:
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where T denotes temperature, cp is the specific heat at constant pressure, v is the velocity in the
xy-plane, �̇ is the shear rate and k is the thermal conductivity. Convection in the z-direction, being
small, is neglected. The remaining components vx and vy of the velocity are
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The pressure equation (1) and energy equation (2) are coupled through the convective velocity
and by the dependence of the viscosity on both temperature and shear rate. In the present study,
a modified Cross model with Arrhenius temperature dependence [3] is implemented:
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(4)

where n is the power law index, �0 is the zero-shear viscosity, �∗ is the parameter that defines the
transition region between zero shear rate and the power law region of the viscosity curve and B
and Tb are constants that depend on the fluid. Boundary and initial conditions for pressure, flow
rate and temperature complete the mathematical model as described for the test case in the results
section.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1217–1223
DOI: 10.1002/fld



COMBINING CVFEM AND MESHLESS FRONT TRACKING 1219

3. DECOUPLED ALGORITHM AND FRONT STRATEGY

The numerical algorithm involves time integration of the energy equation coupled with solution
of the Hele–Shaw pressure equation. Since the timescale for the energy equation is larger than
for the hydrodynamics, an iterative decoupled scheme is appropriate with the temperature field
for the pressure equation taken from the previous step of the energy solver. Iteratively decoupled
approximation of the pressure and temperature field equations is followed by advancement of the
free surface using a front-tracking approach with a local ‘meshless’ data structure at the front.

3.1. Control volume finite element discretization of the pressure equation

A background 2D Delaunay triangulation of the midplane mold domain is first generated. This
is then used to construct a mesh of non-overlapping medial finite volumes. The discretization of
Equation (1) using the CVFEM follows on application of the Gauss divergence theorem to the
corresponding integral conservation statement for each volume. We obtain∫

V
∇ ·(S2∇ p)dV =

∫
S
(S2∇ p) ·ndS=0

where S is the closed boundary of finite volume V and n denotes the unit outward vector normal
to S. In the present scheme, a linear pressure approximation is assumed on each triangle of the
underlying Delaunay mesh. The associated boundary integral contributions from medial segments
are accumulated and assembled to a sparse algebraic system which is solved using the conjugate
gradient method [7].
3.2. Solution of the energy equation

First, recall that convection in the vertical direction is small and therefore neglected, but conduction
in the horizontal direction is included. A semi-Lagrangian formulation in the plane may then
be introduced to accommodate convection [9]. Introducing the material derivative, the energy
equation (2) is rewritten as

DT

Dt
= f where f = 1

�cp
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�z2

)
(5)

In the discrete model, we consider the tensor product of the mold midplane triangulation with
a 1D mesh in the vertical direction. Conduction in the z-direction through the advancing thin
fluid layer is discretized by 1D finite differencing, using a pre-defined number of layers. For the
convective transport in the discretized semi-Lagrangian scheme, consider a particle that occupies
the position of a planar mesh vertex x at time t+�t (and that had previously occupied position
x−�x at time t). The material derivative may then be discretized accordingly through this time
interval �t . Then expanding T (x−�x, t) in a truncated Taylor expansion and substituting in the
previous expression, we obtain

T (x, t+�t)=T (x, t)−�tv ·∇T +�t f (6)

where ∇T is computed for the element that contains the particle of fluid at time t , and v is the
velocity at the vertex. The Cross fluid viscosity relation and Arrhenius model introduce nonlin-
earities in the resulting discretized algebraic system at each implicit timestep and are solved by
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Newton’s method. A more detailed description of the solution scheme for the energy equation (2)
is given by Estacio and Mangiavacchi [7].
3.3. Modified front-tracking ‘meshless’ free surface representation

The discretized free surface can be modeled by a subset of points moving with the local velocity of
the front across a fixed background mesh. Topological changes in the surface, such as coalescence
and splitting may be conveniently accommodated through a flexible data structure that identifies
local nearby one-sided point clusters at the front. This may be viewed in some sense as a front-
tracking strategy combined with a local meshless construct along the fluid side of the advancing
front. Since point distribution can rapidly change during the simulation, the method must be able
to handle both insertion and removal of points, so as to preserve the quality of the front. This
aspect of the algorithm involves a local spatial search adjacent to the moving front with marking
of triangular background elements that contain the points of the front: for each point p of the
front, a radius defining the neighborhood of the point is computed from the average of the edge
lengths of the triangle containing the point, to find its neighbor points in the front and its nearest
neighbor, n p. Then, the angles formed among p and its neighbors are calculated and used to
compose 1D cluster(s) [10] corresponding to neighbor points on the front on either side of p as
follows: the angles formed by connecting p to its nearest neighbor n p and then connecting p with
all others neighbors ni , i=1 . . .N , where N is the number of neighbors, are computed. If these
angles are smaller than a threshold, �, then neighbors of p are grouped into the same cluster;
otherwise, they are grouped in two clusters, as illustrated in Figure 1.

If a point p gives rise to only one cluster, it implies that p is a border of the free surface, while
two clusters mean that it is in the interior of the front and this information defines the insertion

...
p

cluster #1

...
cluster #2

n4

n2

np

n1

n3

(a) (b)

Figure 1. The angle n p pn1 is small in (a), implying one cluster, whereas in (b) the angles np pn1 and
np pn2, are small but the angles n p pn3 and n p pn4 are large implying two clusters.

Figure 2. Insertion procedures for border points: the method seeks to insert a new point ap in the direction
opposite the vector from p to np. In (a) and (b), insertion is not accomplished because the new point
is outside the domain and the distance between p and ap is smaller than the tolerance �, respectively.

Insertion is successfully accomplished in (c).
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strategy. In the case of border points, the algorithm tries to insert a new point ap in the direction
opposite to a vector from p to its nearest neighbor np. The distance from p to this new point is
prescribed as equal to half the distance between p and np as illustrated in Figure 2. If the point
ap lies outside the domain, it is not included in the updated front; also, if the distance between
the new point ap and p is smaller than a predefined threshold, it is likewise deleted. Finally, if the
point is neither outside the domain nor too close to p, it will be added to the front and marked as
a new border of the free surface.

In case of insertion in the interior of the front, the process is accomplished as follows: if the
distance from p to its nearest neighbor in each cluster is larger than half the circle radius, then a
new point is inserted between p and its neighbor. Point removal is carried out if the distance from
p to its nearest neighbor is smaller than a pre-defined tolerance.

4. NUMERICAL RESULTS

Numerical results for a representative test case are presented here to demonstrate the utility of the
scheme, study the coupled transport processes and examine the behavior of the front treatment. The
test case geometry corresponds to a rectangular mold with several geometrical interior ‘obstacles’ as
shown in Figure 3. The corresponding unstructured background Delaunay mesh has 4677 elements
and 2513 finite volume polygon dual cells. Horizontal flow velocity and temperature are specified
at the mold inlet as v0=10−1m/s and T =513K, respectively. The reference wall temperature is
Tw=313K and the reference pressure is p0=105N/m2. For polystyrene, material constants in the
modified Cross model are n=0.2838, �∗ =1.791×104 Pa, Tb=11680K and B=2.591×10−7 Pas.
The density, the specific heat and the thermal conductivity are, respectively, �=940Kg/m3, cp =
2100J/KgK and k=0.18W/mK [11].

The time to complete injection of the specified mold volume at the given inlet flow rate is
1.43 s. Figures 4–6 show the pressure field, temperature field and the front location, respectively,
at intermediate times t=0.16, 0.31, 0.37, 0.50, 0.67, 0.97, 1.16 and 1.27 s.

Figure 3. Dimensions of mold with interior ‘obstacles’: (a) top view and (b) lateral view.

Figure 4. Evolution of the pressure field. Values are scaled by p0.
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Figure 5. Evolution of temperature field.

Figure 6. Advancement of fluid front.

As expected, the pressure drop is higher around the inlet and the fluid is at a higher temperature
closer to the ‘obstacles’ due to the shear viscous effects. An accurate solution of the 3D temperature
equation is important because it will affect viscosity of the polymer and, therefore, velocity, front
position and pressure distribution [12].

In this simulation, it is also possible to observe the capability of the present model to deal with
splitting and remerging of the free surface during the filling process, with addition or removal of
fluid front particles where needed. Adequate characterization of this effect is essential to guarantee
the final quality of the mold part, since the remerging regions correspond to the most fragile areas
of the molded part.

The profiles for pressure, temperature field and fluid front position shown above are quantitatively
similar to those obtained when the VOF scheme in [7] is used to track the free surface. However,
the VOF implementation requires 2476 iterations and 8min 48 s on an Intel Xeon Quad-Core
3.2GHz processor with 4GB RAM, whereas the present method with CFL=0.5 requires 127
iterations and takes 3min 7 s.

5. CONCLUSION

A novel Hele–Shaw scheme for mold filling is developed that involves a 2D model for the
pressure equation of a generalized Newtonian fluid coupled with a 3D thermal model. This model
permits an iteratively decoupled solution strategy within each timestep of a meshless moving front
algorithm. The pressure discretization employs an unstructured control volume scheme, and in the
energy equation, convective heat transfer in the plane is accommodated using a semi-Lagrangian
discretization. The resulting solution algorithm is applied to a representative mold-filling problem
and shown to give accurate reliable results as compared with a prior volume of fluid scheme in
the literature but requiring less computer time.
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